Кислая щелочная и нейтральная среда таблица

Видеоурок: Гидролиз солей

Лекция: Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Гидролиз солей

Мы продолжаем изучать закономерности протекания химических реакций. При изучении темы 1.4.5 Электролитическая диссоциация электролитов в водных растворах вы узнали, что при электролитической диссоциации в водном растворе частицы, участвующих в реакции веществ растворяются в воде. Это гидролиз. Ему подвергаются различные неорганические и органические вещества, в частности, соли. Без понимания процесса гидролиза солей, вы не сможете объяснить явления, происходящие в живых организмах.

Сущность гидролиза солей сводится к обменному процессу взаимодействия ионов (катионов и анионов) соли с молекулами воды. В результате образуется слабый электролит – малодиссоциирующее соединение. В водном растворе появляется избыток свободных ионов Н + или ОН – . Вспомните, диссоциация каких электролитов образует ионы Н + , а каких ОН – . Как вы догадались, в первом случае мы имеем дело с кислотой, значит водная среда с ионами Н + будет кислой. Во втором же случае, щелочной. В самой воде среда нейтральная, поскольку она незначительно диссоциируется на одинаковые по концентрации ионы Н + и ОН – .

Характер среды можно определить с помощью индикаторов. Фенолфталеин обнаруживает щелочную среду и окрашивает раствор в малиновый цвет. Лакмус под действием кислоты становится красным, а под действием щелочи остается синим. Метилоранж – оранжевый, в щелочной среде становится желтым, в кислой среде – розовым. Тип гидролиза зависит от типа соли.

Типы солей

Итак, любую соль представляет собой можно взаимодействие кислоты и основания, которые, как вы поняли, бывают сильными и слабыми. Сильные – это те, чья степень диссоциации α близка к 100%. Следует запомнить, что сернистую (H2SO3) и фосфорную (H3PO4) кислоту чаще относят к кислотам средней силы. При решении задач по гидролизу, данные кислоты необходимо относить к слабым.

Сильные: HCl; HBr; Hl; HNO3; HClO4; H2SO4. Их кислотные остатки с водой не взаимодействуют.

Слабые: HF; H2CO3; H2SiO3; H2S; HNO2; H2SO3; H3PO4; органические кислоты. А их кислотные остатки взаимодействуют с водой, забирая у её молекул катионы водорода H+.

Сильные: растворимые гидроксиды металлов; Ca(OH)2; Sr(OH)2. Их катионы металлов с водой не взаимодействуют.

Слабые: нерастворимые гидроксиды металлов; гидроксид аммония (NH4OH). А катионы металлов здесь взаимодействуют с водой.

Исходя из данного материала, рассмотрим типы солей :

Соли с сильным основанием и сильной кислотой. К примеру: Ba (NO3)2, KCl, Li2SO4. Особенности: не взаимодействуют с водой, а значит гидролизу не подвергаются. Растворы таких солей имеют нейтральную реакцию среды.

Соли с сильным основанием и слабой кислотой. К примеру: NaF, K2CO3, Li2S. Особенности: с водой взаимодействуют кислотные остатки этих солей, происходит гидролиз по аниону. Среда водных растворов – щелочная.

Соли со слабым основанием и сильной кислотой. К примеру: Zn(NO3)2, Fe2(SO4)3, CuSO4. Особенности: с водой взаимодействуют только катионы металлов, происходит гидролиз по катиону. Среда – кислая.

Соли со слабым основанием и слабой кислотой. К примеру: CH3COONН4, (NН4)23, HCOONН4. Особенности: с водой взаимодействуют как катионы, так и анионы кислотных остатков, гидролиз происходит по катиону и аниону.

Пример гидролиза по катиону и образования кислой среды:

Гидролиз хлорида железа FeCl 2

FeCl2 + H2O ↔ Fe(OH)Cl + HCl (молекулярное уравнение)

Fe 2+ + 2Cl – + H + + OH – ↔ FeOH + + 2Cl – + Н + (полное ионное уравнение)

Fe 2+ + H2O ↔ FeOH + + Н + (сокращенное ионное уравнение)

Пример гидролиза по аниону и образования щелочной среды:

Гидролиз ацетата натрия CH3COONa

Читайте также:  Грушевый пирог с мороженым рецепт

CH3COONa + H2O ↔ CH3COOH + NaOH (молекулярное уравнение)

Na + + CH3COO – + H2O ↔ Na + + CH3COOH + OH – (полное ионное уравнение)

CH3COO – + H2O ↔ CH3COOH + OH – (сокращенное ионное уравнение)

Пример совместного гидролиза:

В данном случае мы видим полный гидролиз, который происходит, если соль образована слабым нерастворимым или летучим основанием и слабой нерастворимой или летучей кислотой. В таблице растворимости стоят прочерки на таких солях. Если в ходе реакции ионного обмена образуется соль, которая не существует в водном растворе, то надо написать реакцию этой соли с водой.

Складываем эти два уравнения, то что повторяется в левой и правой частях, сокращаем:

  • Главная
  • Обучение
  • Предварительный просмотр
  • Мероприятия / ВИШР
  • Обучение
  • Тренажер ЕГЭ
  • Учебные пособия
  • Игры
  • 120 лет ТПУ. Викторина онлайн
  • Университетские субботы
  • Высшая инженерная школа России
Химия

1.4.7. Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная.

Гидролиз – это взаимодействие веществ с водой, в результате которого изменяется среда раствора.

Катионы и анионы слабых электролитов способны взаимодействовать с водой с образованием устойчивых малодиссоциируемых соединений или ионов, в результате чего меняется среда раствора. Формулы воды в уравнениях гидролиза обычно записывают в виде Н‑ОН. При реакции с водой катионы слабых оснований отнимают от воды гидроксил ион, и в растворе образуется избыток Н + . Среда раствора становится кислотной. Анионы слабых кислот притягивают из воды Н + , и реакция среды становится щелочной.

В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т.е. с обменным взаимодействием ионов соли с молекулами воды в процессе их растворения. Различают 4 варианта гидролиза.

1. Соль образована сильным основанием и сильной кислотой.

Такая соль гидролизу практически не подвергается. При этом равновесие диссоциации воды в присутствии ионов соли почти не нарушается, поэтому рН=7, среда нейтральная.

2. Если соль образована катионом сильного основания и анионом слабой кислоты, то происходит гидролиз по аниону.

Так как в растворе накапливаются ионы ОН ‑ , то среда – щелочная, рН>7.

3. Если соль образована катионом слабого основания и анионом сильной кислоты, то гидролиз идет по катиону.

Cu 2+ + HOH (leftrightarrow) CuOH + + H +

СuCl2 + HOH (leftrightarrow) CuOHCl + HCl

Так как в растворе накапливаются ионы Н + , то среда кислая, рН (leftrightarrow) NH4OH + CH3COOH

CH3COO ‑ + + HOH (leftrightarrow) NH4OH + CH3COOH

Растворы таких солей имеют или слабокислую, или слабощелочную среду, т.е. величина рН близка к 7. Реакция среды зависит от соотношения констант диссоциации кислоты и основания. Гидролиз солей, образованных очень слабыми кислотой и основанием, является практически необратимым. Это, в основном, сульфиды и карбонаты алюминия, хрома, железа.

При определении среды раствора солей необходимо учитывать, что среда раствора определяется сильным компонентом. Если соль образована кислотой, являющейся сильным электролитом, то среда раствора кислая. Если основание сильный электролит, то – щелочная.

Пример. Щелочную среду имеет раствор

1) Pb(NO3)2; 2) Na2CO3; 3) NaCl; 4) NaNO3

1) Pb(NO3)2 нитрат свинца(II). Соль образована слабым основанием и сильной кислотой, значит среда раствора кислая.

2) Na2CO3 карбонат натрия. Соль образована сильным основанием и слабой кислотой, значит среда раствора щелочная.

3) NaCl; 4) NaNO3 Соли образованы сильным основанием NaOH и сильными кислотами HCl и HNO3 . Среда раствора нейтральная.

Правильный ответ 2) Na2CO3

В растворы солей опустили индикаторную бумажку. В растворах NaCl и NaNO3 она не изменила цвет, значит среда раствора нейтральная. В растворе Pb(NO3)2 окрасилась в красный цвет, среда раствора кислая. В растворе Na2СO3 окрасилась в синий цвет, среда раствора щелочная.

Кислоты и щелочи – два крайних положения одной шкалы: их свойства (совершенно противоположные) обусловливает одна и та же величина – концентрация ионов водорода (H+). Однако само по себе это число очень неудобное: даже в кислых средах, где концентрация ионов водорода выше, это число составляет сотые, тысячные доли единицы. Поэтому для удобства пользуются десятичным логарифмом этого значения, умноженным на минус один. Принято говорить, что это pH (potentia Hydrogen), или же водородный показатель.

Читайте также:  Триммер для женщин отзывы

Возникновение понятия

Вам будет интересно: Какие свойства воздуха использует костер? Или все-таки люди, его разжигая?

Вообще тот факт, что кислая среда и щелочная среда определяются концентрацией ионов водорода H+ и что чем выше их концентрация, тем раствор более кислый (и наоборот, чем ниже концентрация H+, тем более щелочная среда и выше концентрация противоположных ионов OH-), был известен науке достаточно давно. Однако лишь в 1909 году датский химик Серенсен впервые опубликовал исследования, в которых пользовался понятием водородного показателя – PH, впоследствии замененным на pH.

Расчет кислотности

При расчете водородного показателя исходят из того, что молекулы воды в растворе, хоть и в очень малых количествах, все же диссоциируют на ионы. Эта реакция называется автопротолизом воды:

Реакция обратима, поэтому для нее определена константа равновесия (показывающая, какие в среднем устанавливаются концентрации каждого компонента). Здесь дано значение константы для стандартных условий – температуры 22 °С.

Внизу в квадратных скобках – молярные концентрации указанных компонентов. Молярная концентрация воды в воде – приблизительно 55 моль/литр, то есть величина второго порядка. Следовательно, произведение концентраций ионов H+ и OH- – около 10-14. Эта величина называется ионным произведением воды.

В чистой воде концентрации ионов водорода и гидроксид-ионов равны 10-7. Соответственно, водородный показатель воды будет приблизительно 7. Это значение pH принимают за нейтральную среду.

Далее нужно отвлечься от воды и рассмотреть раствор какой-нибудь кислоты или щелочи. Возьмем, например, уксусную кислоту. Ионное произведение воды останется прежним, однако баланс между ионами H+ и OH- сместится в сторону первых: ионы водорода придут от частично продиссоциировавшей уксусной кислоты, а "лишние" гидроксид-ионы уйдут в недиссоциировавшие молекулы воды. Таким образом, концентрация ионов водорода будет выше, и pH будет меньше (не надо забывать, что логарифм берется со знаком "минус"). Соответственно, кислая среда и щелочная среда связаны с pH. И связаны следующим образом. Чем меньше значение водородного показателя, тем более кислая среда.

Свойства кислой среды

Кислая среда – это растворы с pH меньше 7. Следует оговориться, что, хотя значение ионного произведения воды на первый взгляд ограничивает значения водородного показателя в пределах от 1 до 14, на самом деле растворы с pH меньше единицы (и даже меньше нуля) и больше 14 существуют. Например, в концентрированных растворах сильных кислот (серной, соляной) pH может достигать -2.

Вам будет интересно: Термин таймшит. Таймшит – это.

От того, имеем ли мы кислую среду или среду щелочную, может зависеть растворимость некоторых веществ. Например, возьмем гидроксиды металлов. Растворимость определяется величиной произведения растворимости, которое по структуре есть то же, что и ионное произведение воды: перемноженные концентрации. В случае с гидроксидом в произведение растворимости входит концентрация иона металла и концентрация гидроксид-ионов. В случае избытка ионов водорода (в кислой среде) они будут активнее "вырывать" гидроксид-ионы из осадка, тем самым смещая равновесие в сторону растворенной формы, повышая растворимость осадка.

Также стоит упомянуть, что весь пищеварительный тракт человека имеет кислую среду: pH желудочного сока колеблется от 1 до 2. Отклонение от этих значений в меньшую или большую сторону может являться признаком различных заболеваний.

Свойства щелочной среды

В щелочной среде водородный показатель принимает значения, превышающие 7. Для удобства в средах с высокой концентрацией гидроксид-ионов вместо водородного показателя кислотности pH пользуются показателем основности pOH. Нетрудно догадаться, что он обозначает величину, равную -lg[OH-] (отрицательный десятичный логарифм концентрации гидроксид-ионов). Непосредственно из ионного произведения воды следует равенство pH + pOH =14. Поэтому pOH = 14 – pH. Таким образом, у всех утверждений, верных для показателя кислотности pH, верны обратные утверждения для показателя основности pOH. Если pH щелочной среды большой по определению, то ее pOH, очевидно, маленький, и чем сильнее раствор щелочи, тем меньше показатель pOH.

Читайте также:  Дом на зимние каникулы

В этом предложении только что появился логический парадокс, вносящий путаницу во многие рассуждения о кислотности: маленький показатель кислотности обозначает высокую кислотность среды, и наоборот: большие значения pH соответствуют низкой кислотности. Этот парадокс появляется потому, что логарифм берется со знаком минус, и шкала кислотности как бы инвертируется.

Практическое определение кислотности

Для определения кислотности среды применяются так называемые индикаторы. Обычно это достаточно сложно устроенные органические молекулы, которые меняют свой цвет в зависимости от pH среды. Индикатор меняет свой цвет в очень узком интервале pH: это используется в кислотно-основном титровании, чтобы добиться точных результатов: титрование прекращают, как только индикатор меняет цвет.

Наиболее известные индикаторы – метиловый оранжевый (интервал перехода в области с маленьким pH), фенолфталеин (интервал перехода в области с большим pH), лакмус, тимоловый голубой и другие. В кислых средах и щелочных средах применяются разные индикаторы в зависимости от того, в какой области лежит их интервал перехода.

Существуют также универсальные индикаторы – они меняют свой цвет постепенно с красного на глубоко фиолетовый при переходе из сильно кислотных сред в сильно щелочные. На самом деле универсальные индикаторы представляют собой смесь из обычных.

Для более точного определения кислотности используют прибор – pH-метр (потенциометр, метод, соответственно, называется потенциометрия). Его принцип работы основан на измерении ЭДС в цепи, элементом которой является раствор с измеряемым pH. Потенциал электрода, погруженного в раствор, чувствителен к концентрации ионов водорода в растворе – отсюда изменение ЭДС, на основании которого рассчитывается реальный pH.

Кислотность различных сред в быту

Показатель кислотности имеет большое значение в повседневной жизни. Например, слабые кислоты – уксусная, яблочная – используются в качестве консервантов. Щелочные растворы являются моющими средствами, в том числе и мыло. Самое простое мыло представляет собой натриевые соли жирных кислот. В воде они диссоциируют: остаток жирной кислоты – очень длинный – с одной стороны имеет отрицательный заряд, а с другой своей стороны – длинную неполярную цепочку атомов углерода. Тот конец молекулы, на котором заряд участвует в гидратации, собирает вокруг себя молекулы воды. Второй конец присоединяется к другим неполярным вещам, например, молекулам жира. В результате образуются мицеллы – шарики, у которых наружу торчат "хвосты" с отрицательным зарядом, а внутри спрятаны "хвосты" и частички жира и грязи. Поверхность отмывается от жира и грязи за счет того, что моющее средство связывает весь жир и грязь в такие мицеллы.

Кислотность и здоровье

Уже было упомянуто, что pH имеет большое значение для человеческого организма. Кроме пищеварительного тракта, показатель кислотности важно контролировать и в других частях организма: кровь, слюна, кожа – для многих биологических процессов имеют большое значение кислая среда и щелочная среда. Их определение позволяет оценить состояние организма.

Сейчас набирают популярность pH-тесты – так называемые экспресс-тесты для проверки кислотности. Они представляют собой обычные полоски универсальной индикаторной бумаги.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

четыре + 19 =

Adblock detector